Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Silicon photonic index sensors have received significant attention for label-free bio and gas-sensing applications, offering cost-effective and scalable solutions. Here, we introduce an ultra-compact silicon photonic refractive index sensor that leverages zero-crosstalk singularity responses enabled by subwavelength gratings. The subwavelength gratings are precisely engineered to achieve an anisotropic perturbation-led zero-crosstalk, resulting in a single transmission dip singularity in the spectrum that is independent of device length. The sensor is optimized for the transverse magnetic mode operation, where the subwavelength gratings are arranged perpendicular to the propagation direction to support a leaky-like mode and maximize the evanescent field interaction with the analyte space. Experimental results demonstrate a high wavelength sensitivity of − 410 nm/RIU and an intensity sensitivity of 395 dB/RIU, with a compact device footprint of approximately 82.8 μm2. Distinct from other resonant and interferometric sensors, our approach provides an FSR-free single-dip spectral response on a small device footprint, overcoming common challenges faced by traditional sensors, such as signal/phase ambiguity, sensitivity fading, limited detection range, and the necessity for large device footprints. This makes our sensor ideal for simplified intensity interrogation. The proposed sensor holds promise for a range of on-chip refractive index sensing applications, from gas to biochemical detection, representing a significant step towards efficient and miniaturized photonic sensing solutions. Graphical Abstractmore » « less
-
We present an in-plane beam converter scheme that can focus a large Gaussian slab mode into a tightly focused spot approximately hundreds of micrometers away from the chip facet. Our approach involves designing the modal expander that converts a photonic waveguide mode to a large Gaussian slab mode and engineering the two-dimensional (2D) gradient-index subwavelength grating arrays that modify modal wavefront to be focused as the beam propagates. The device is designed on a monolithic silicon nitride scheme, which is transparent at the visible wavelength regime and readily available for the complementary metal-oxide-semiconductor process. Our device can be utilized in various chip-scale photonic applications, especially involving biochemical species and target samples ranging from one to tens of micrometer scales.more » « less
-
We present polarization-free Bragg filters having subwavelength gratings (SWGs) in the lateral cladding region. This Bragg design expands modal fields toward upper cladding, resulting in enhanced light interaction with sensing analytes. Two device configurations are proposed and examined, one with index-matched coupling between transverse electric (TE) and transverse magnetic (TM) modes and the other one with hybrid-mode (HM) coupling. Both configurations introduce a strong coupling between two orthogonal modes (either TE-TM or HM1-HM2) and rotate the polarization of the input wave through Bragg reflection. The arrangements of SWGs help to achieve two configurations with different orthogonal modes, while expanding modal profiles toward the upper cladding region. Our proposed SWG-assisted Bragg gratings with polarization independency eliminate the need for a polarization controller and effectively tailor the modal properties, enhancing the potential of integrated photonic sensing applications.more » « less
-
Abstract Electromagnetic coupling via an evanescent field or radiative wave is a primary characteristic of light, allowing optical signal/power transfer in a photonic circuit but limiting integration density. A leaky mode, which combines both evanescent field and radiative wave, causes stronger coupling and is thus considered not ideal for dense integration. Here we show that a leaky oscillation with anisotropic perturbation rather can achieve completely zero crosstalk realized by subwavelength grating (SWG) metamaterials. The oscillating fields in the SWGs enable coupling coefficients in each direction to counteract each other, resulting in completely zero crosstalk. We experimentally demonstrate such an extraordinarily low coupling between closely spaced identical leaky SWG waveguides, suppressing the crosstalk by ≈40 dB compared to conventional strip waveguides, corresponding to ≈100 times longer coupling length. This leaky-SWG suppresses the crosstalk of transverse–magnetic (TM) mode, which is challenging due to its low confinement, and marks a novel approach in electromagnetic coupling applicable to other spectral regimes and generic devices.more » « less
-
Optical delay lines control the flow of light in time, introducing phase and group delays for engineering interferences and ultrashort pulses. Photonic integration of such optical delay lines is essential for chip-scale lightwave signal processing and pulse control. However, typical photonic delay lines based on long spiral waveguides require extensively large chip footprints, ranging from mm2to cm2scales. Here we present a scalable, high-density integrated delay line using a skin-depth engineered subwavelength grating waveguide, i.e., an extreme skin-depth (eskid) waveguide. The eskid waveguide suppresses the crosstalk between closely spaced waveguides, significantly saving the chip footprint area. Our eskid-based photonic delay line is easily scalable by increasing the number of turns and should improve the photonic chip integration density.more » « less
-
We present a broadband integrated photonic polarization splitter and rotator (PSR) using adiabatically tapered coupled waveguides with subwavelength grating (SWG) claddings. The PSR adiabatically rotates and splits the fundamental transverse-magnetic (TM0) input to the fundamental transverse-electric (TE0) mode in the coupler waveguide, while passing the TE0input through the same waveguide. The SWGs work as an anisotropic metamaterial and facilitate modal conversions, making the PSR efficient and broadband. We rigorously present our design approaches in each section and show the SWG effect by comparing with and without the SWG claddings. The coupling coefficients in each segment explicitly show a stronger coupling effect when the SWGs are included, confirmed by the coupled-mode theory simulations. The full numerical simulation shows that the SWG-PSR operates at 1500–1750 nm (≈250 nm) wavelengths with an extinction ratio larger than 20 dB, confirmed by the experiment for the 1490–1590 nm range. The insertion losses are below 1.3 dB. Since our PSR is designed based on adiabatical mode evolution, the proposed PSR is expected to be tolerant to fabrication variations and should be broadly applicable to polarization management in photonic integrated circuits.more » « less
-
A photonic Bragg grating is a fundamental building block that reflects the direction of wave propagation through spatial phase modulation and can be implemented using sidewall corrugation. However, due to the asymmetric aspect ratio of a waveguide cross section, typical Bragg gratings exhibit a strong polarization sensitivity. Here, we show that photonic Bragg gratings with cladding asymmetry can enable polarization-independent notch filters by rotating input polarizations. Such Bragg gratings strongly couple transverse electric (TE) and transverse magnetic (TM) modes propagating in opposite directions, filtering the input signal and reflecting the rotated mode. We analyzed this polarization-rotating Bragg grating using the coupled-mode theory and experimentally demonstrated it on a silicon-on-insulator platform. Our device concept is simple to implement and compatible with other platforms, readily available as polarization transparent Bragg components.more » « less
-
We present an ultra-broadband silicon photonic polarization beam splitter (PBS) using adiabatically tapered extreme skin-depth (eskid) waveguides. Highly anisotropic metamaterial claddings of the eskid waveguides suppress the crosstalk of transverse-electric (TE) mode, while the large birefringence of the eskid waveguide efficiently cross-couples the transverse-magnetic (TM) mode. Two eskid waveguides are adiabatically tapered to smoothly translate TM mode to the coupled port via mode evolution while keeping the TE mode in the through port. The tapered cross-section of the eskid PBS was designed numerically, achieving a large bandwidth at 1400–1650 nm with extinction ratios . We experimentally demonstrated the tapered-eskid PBS and confirmed its broad bandwidth at 1490–1640 nm, limited by laser bandwidth. With its mode evolution, the tapered-eskid PBS is tolerant to fabrication imperfections and should be crucial for controlling polarizations in photonic circuits.more » « less
An official website of the United States government
